

TERRAMETRA

QUADRATIC EQUATIONS

Terrametra Resources Lynn Patten

- The Zero-Factor Property
- The Square Root Property
- Completing the Square
- The Quadratic Formula
- Solving for a Specified Variable
- The Discriminant

QUADRATIC EQUATIONS

(Second Degree Equations)

QUADRATIC EQUATIONS

A <u>quadratic equation</u> is a <u>second-degree equation</u>, that is, an equation with a squared variable term and no terms of greater degree.

$$x^2 = 25 \qquad 4x^2 + 4x - 5 = 0 \qquad 3x^2 = 4x - 8$$

ZERO-FACTOR PROPERTY

ZERO-FACTOR PROPERTY

If a and b are complex numbers with ab = 0,

then a = 0 or b = 0 or **both** equal zero.

Example 1 Using the Zero-Factor Property

1(a) Solve: $6x^2 + 7x = 3$ Solution: $6x^2 + 7x - 3 = 0$ Standard form. (3x-1)(2x+3) = 0Factor. 3x - 1 = 0 or 2x + 3 = 0Zero-factor property. 3x = 1 or 2x = -3Solve each equation. $x = \frac{1}{3}$ or $x = -\frac{3}{2}$

SQUARE ROOT PROPERTY

SQUARE ROOT PROPERTY

If
$$x^2 = k$$
, then

$$x = \sqrt{k}$$
 or $x = -\sqrt{k}$

SQUARE ROOT PROPERTY

A quadratic equation of the form $x^2 = k$ can be solved by factoring.

 $x^2 - k = 0$ Subtract *k* (both sides).

$$(x - \sqrt{k})(x + \sqrt{k}) = 0$$
 Factor.

 $x - \sqrt{k} = 0$ or $x + \sqrt{k} = 0$ Zero-factor property.

 $x = \sqrt{k}$ or $x = -\sqrt{k}$ Solve each equation.

SQUARE ROOT PROPERTY

That is, the solution set of $x^2 = k$ is $\{\sqrt{k}, -\sqrt{k}\}$ which may be abbreviated $\{\pm\sqrt{k}\}$.

Both solutions are real if k > 0. Both are pure imaginary if k < 0.

If k < 0, we write the solution set as $\{\pm i\sqrt{|k|}\}$

If k = 0, then there is only one distinct solution, 0, sometimes called a <u>double solution</u>.

Example 2 Using the Square Root Property

2(a) Solve:
$$x^2 = 17$$

Solution:

By the square root property ... The solution set of $x^2 = 17$ is $\{\pm \sqrt{17}\}$.

Example 2 Using the Square Root Property

2(b) Solve: $x^2 = -25$ *Solution:*

By the square root property and since $\sqrt{-1} = i$... The solution set of $x^2 = -25$ is $\{\pm 5i\}$.

Example 2 Using the Square Root Property

2(c) Solve: $(x - 4)^2 = 12$

Solution:

 $x - 4 = \pm \sqrt{12}$ Generalized
square root property. $x = 4 \pm \sqrt{12}$ Add 4 (both sides). $x = 4 \pm 2\sqrt{3}$ $\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}$

The solution set is $\{4 \pm 2\sqrt{3}\}$.

COMPLETING the SQUARE

COMPLETING the SQUARE

To solve $ax^2 + bx + c = 0$, where $a \neq 0$,

by completing the square, use these steps:

- **Step 1** If $a \neq 1$, divide both sides of the equation by a.
- **Step 2** Rewrite the equation so that the constant term is alone on one side of the equality symbol.
- **Step 3** Square half the coefficient of *x*, and add this square to each side of the equation.
- **Step 4** Factor the resulting trinomial as a perfect square and combine like terms on the other side.

Step 5 Use the square root property to complete the solution.

Example 3 Completing the Square (a = 1)

3(a) Solve:
$$x^2 - 4x - 14 = 0$$

Solution:

Step 1 This step is not necessary since a = 1.

Step 2
$$x^2 - 4x = 14$$
 Add 14 (both sides).

Step 3 $x^2 - 4x + 4 = 14 + 4$

$$\left[\frac{1}{2}(-4)\right]^2 = 4$$

Add 4 (both sides).

Step 4 $(x-2)^2 = 18$

Factor; Combine like terms.

Example 3 Completing the Square (a = 1)

3(a) Solve:
$$x^2 - 4x - 24 = 0$$

Solution (cont'd):

The solution set is $\{2 \pm 3\sqrt{2}\}$.

Example 4 Completing the Square (a ≠ 1)

4(a) Solve: $9x^2 - 12x + 9 = 0$

Solution:

$$9x^2 - 12x + 9 = 0$$

Step 1 $x^2 - \frac{4}{3}x + 1 = 0$

Step 2 $x^2 - \frac{4}{3}x = -1$

Step 3 $x^2 - \frac{4}{3}x + \frac{4}{9} = -1 + \frac{4}{9}$

Step 4 $\left(x - \frac{2}{3}\right)^2 = -\frac{5}{9}$

Divide by 9 (both sides).

Subtract 1 (*both sides*). $\left[\frac{1}{2}\left(-\frac{4}{3}\right)\right]^{2} = \frac{4}{9}$ Add $\frac{4}{9}$ (*both sides*). Factor; Combine like terms.

Example 4 Completing the Square (a≠1)

4(a) Solve:
$$9x^2 - 12x + 9 = 0$$

Solution (cont'd): $\left(x - \frac{2}{3}\right)^2 = -\frac{5}{9}$ $x - \frac{2}{3} = \pm \sqrt{-\frac{5}{9}}$ Square root property. Step 5 $x - \frac{2}{3} = \pm \frac{\sqrt{5}}{3}i$ $\sqrt{-\frac{5}{9}} = \frac{\sqrt{-5}}{\sqrt{9}} = \frac{i\sqrt{5}}{3}$ or $\frac{\sqrt{5}}{3}i$ $x = \frac{2}{3} \pm \frac{\sqrt{5}}{3}i$ Add $\frac{2}{3}$ (both sides). The solution set is $\left\{\frac{2}{3} \pm \frac{\sqrt{5}}{3}i\right\}$.

QUADRATIC FORMULA

QUADRATIC FORMULA

The solutions of the <u>quadratic equation</u> $ax^2 + bx + c = 0$, where $a \neq 0$, are given by the <u>quadratic formula</u> ...

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

QUADRATIC FORMULA

That is, if we start with the equation ... $ax^2 + bx + c = 0$, for a > 0, and complete the square to solve for xin terms of the constants a, b, and c, the result is a general formula for solving any quadratic equation.

QUADRATIC FORMULA

Example 5 Using the Quadratic Formula (Real Solutions)

5(a) Solve:
$$x^2 - 4x = -2$$

Solution:

 $x^{2} - 4x + 2 = 0$ Standard form. $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ Quadratic formula. a = 1, b = -4, c = 2 $= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(1)(2)}}{2(1)}$ The fraction bar extends under -b.
Use parentheses and substitute carefully to avoid errors.

Example 5 Using the Quadratic Formula (Real Solutions)

5(a) Solve:
$$x^2 - 4x = -2$$

Solution (cont'd):

$$x = \frac{4 \pm \sqrt{16 - 8}}{2}$$
Simplify.

$$x = \frac{4 \pm 2\sqrt{2}}{2}$$

$$\sqrt{16 - 8} = \sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}$$
Factor first,
then divide.

$$x = \frac{2(2 \pm \sqrt{2})}{2}$$
Factor 2 out of
the numerator.

$$x = 2 \pm \sqrt{2}$$
Lowest terms.

The solution set is $\{2 \pm \sqrt{2}\}$.

Example 6 Using the Quadratic Formula (Nonreal Complex Solutions)

6(a) Solve:
$$2x^2 = x - 4$$

Solution:

$$2x^2 - x + 4 = 0$$
 Standard form.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic formula.
$$a = 2, b = -1, c = 4$$

Example 6 Using the Quadratic Formula (Nonreal Complex Solutions)

6(a) Solve:
$$2x^2 = x - 4$$

Solution (cont'd):

$$x = \frac{1 \pm \sqrt{1 - 32}}{4}$$
 Simplify.
$$x = \frac{1 \pm \sqrt{-31}}{4}$$
 $\sqrt{-1} = i$
$$x = \frac{1 \pm i\sqrt{31}}{4}$$

The solution set is
$$\left\{\frac{1}{4} \pm \frac{\sqrt{31}}{4}i\right\}$$
.

CUBIC EQUATIONS (Third Degree Equations)

CUBIC EQUATIONS

A <u>cubic equation</u> is a <u>third-degree equation</u>, because the greatest degree of the terms is 3.

$$x^3 = -8 \qquad 8x^3 + 10x^2 - 4x - 5 = 0 \qquad 3x^3 = 3x^2 - 9$$

Example 7 Solving a Cubic Equation

7(a) Solve: $x^3 + 8 - 0$ using factoring and the quadratic formula.

$$(x+2)(x^2-2x+4) = 0$$
 Factor as a sum of cubes

$$x + 2 = 0$$
 or $x^2 - 2x + 4 = 0$ Zero-factor property.

$$x = -2 \text{ or } x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}$$
Remember to include
n the final solution set.

$$x = \frac{2 \pm \sqrt{-12}}{2}$$
Quadratic formula.

$$a = 1, b = -2, c = 4$$
Simplify.

Example 7 Solving a Cubic Equation

7(a) Solve:
$$x^3 + 8 = 0$$

Solution (cont'd):

$$x = \frac{2 \pm \sqrt{-12}}{2}$$

$$x = \frac{2 \pm 2i\sqrt{3}}{2}$$
Simplify the radical.
$$x = \frac{2(1 \pm i\sqrt{3})}{2}$$
Factor 2 out of the numerator.
$$x = 1 \pm i\sqrt{3}$$
Lowest terms.
The solution set is $\{-2, 1 \pm i\sqrt{3}\}$.

8(a) Solve the equation for the specified variable. Use \pm when taking square roots. Solve: $A = \frac{\pi d^2}{4}$, for dSolution: $A = \frac{\pi d^2}{4}$ $4A = \pi d^2$ Multiply by 4 (both sides).

Divide by π (both sides).

Square root property.

Example 8 Solving for a Quadratic Variable

8(a) Solve the equation for the specified variable. Use \pm when taking square roots.

Solve:
$$A = \frac{\pi d^2}{4}$$
, for d
Solution (cont'd): $d = \pm \frac{\sqrt{4A}}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{\sqrt{\pi}}$ Multiply by $\frac{\sqrt{\pi}}{\sqrt{\pi}}$

$$d = \frac{\pm \sqrt{4A\pi}}{\pi}$$

Multiply numerators. Multiply denominators.

$$d = \frac{\pm 2\sqrt{A\pi}}{\pi}$$

Simplify the radical.

8(b) Solve the equation for the specified variable. Use \pm when taking square roots.

Solve: $rt^2 - st = k$ $(r \neq 0)$, for t

Solution: Because $rt^2 - st = k$ has terms with t^2 and t, use the quadratic formula.

 $rt^2 - st - k = 0$ Write in standard form.

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic formula. a = r, b = -s, = -k

8(b) Solve the equation for the specified variable. Use \pm when taking square roots.

Solve: $rt^2 - st = k$ $(r \neq 0)$, for t

Solution (cont'd):

$$t = \frac{-(-s) \pm \sqrt{(-s)^2 - 4(r)(-k)}}{2(r)}$$

Quadratic formula. a = r, b = -s, = -k

$$t = \frac{s \pm \sqrt{s^2 + 4rk}}{2r}$$

Simplify.

Example 8 Solving for a Quadratic Variable

In Example 8 ...

we took both positive and negative square roots.

However, if the variable represents time or length in an application, we consider only the *positive* square root.

DISCRIMINANT

DISCRIMINANT

The quantity under the radical in the quadratic formula, $b^2 - 4ac$, is called the <u>discriminant</u>.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

DISCRIMINANT

DISCRIMINANT	NUMBER OF SOLUTIONS	TYPE OF SOLUTIONS
Positive, Perfect Square	Two	Rational
Positive, Not a Perfect Square	Two	Irrational
Zero	One (Double Solution)	Rational
Negative	Two	Nonreal Complex

DISCRIMINANT

Caution

The restriction on a, b, and c is important.

For example $x^2 - \sqrt{5}x - 1 = 0$ has discriminant $b^2 - 4ac = 5 + 4 = 9$, which would indicate two rational solutions *if the coefficients were integers*. By the quadratic formula, the two solutions ... $\frac{\sqrt{5}\pm 3}{2}$ are *irrational* numbers.

9(a) Evaluate the discriminant for the equation. Then use it to determine the number of distinct solutions, and tell whether they are *rational*, *irrational*, or *nonreal complex* numbers.

$$5x^2 + 2x - 4 = 0$$

Solution:

For
$$5x^2 + 2x - 4 = 0$$
, use $a = 5$, $b = 2$, and $c = -4$.
 $b^2 - 4ac = 2^2 - 4(5)(-4) = 84$

The discriminant 84 is positive and not a perfect square ... There are two distinct irrational solutions.

Example 9 Using the Discriminant

9(b) Evaluate the discriminant for the equation. Then use it to determine the number of distinct solutions, and tell whether they are *rational*, *irrational*, or *nonreal complex* numbers.

$$x^2 - 10x = -25$$

Solution:

For
$$x^2 - 10x + 25 = 0$$
, use $a = 1$, $b = -10$, and $c = 25$.
 $b^2 - 4ac = 10^2 - 4(1)(25) = 0$

There is one distinct rational solution, a double solution.

Example 9 Using the Discriminant

9(c) Evaluate the discriminant for the equation. Then use it to determine the number of distinct solutions, and tell whether they are *rational*, *irrational*, or *nonreal complex* numbers.

$$2x^2 - x + 1 = 0$$

Solution:

For
$$2x^2 - x + 1 = 0$$
, use $a = 2$, $b = -1$, and $c = 1$.
 $b^2 - 4ac = (-1)^2 - 4(2)(1) = -7$

There are two distinct nonreal complex solutions. (They are complex conjugates.)