TERRAMETRA

QUADRATIC EQUATIONS

Terrametra Resources
Lynn Patten

QUADRATIC EQUATIONS

- The Zero-Factor Property
- The Square Root Property
- Completing the Square
- The Quadratic Formula
- Solving for a Specified Variable
- The Discriminant

QUADRATIC EQUATIONS (Second Degree Equations)

QUADRATIC EQUATIONS

A quadratic equation is a second-degree equation, that is, an equation with a squared variable term and no terms of greater degree.

$$
x^{2}=25 \quad 4 x^{2}+4 x-5=0 \quad 3 x^{2}=4 x-8
$$

ZERO-FACTOR PROPERTY

ZERO-FACTOR PROPERTY

If \boldsymbol{a} and \boldsymbol{b} are complex numbers with $\boldsymbol{a} \boldsymbol{b}=\mathbf{0}$,
then $\boldsymbol{a}=\mathbf{0}$ or $\boldsymbol{b}=\mathbf{0}$ or both equal zero.

Example 1
 Using the Zero-Factor Property

1(a) Solve: $6 x^{2}+7 x=3$
Solution:

$$
\begin{aligned}
6 x^{2}+7 x-3=0 & \text { Standard form. } \\
(3 x-1)(2 x+3)=0 & \text { Factor. } \\
3 x-1=0 \text { or } 2 x+3=0 & \text { Zero-factor property. } \\
3 x=1 \text { or } 2 x=-3 & \text { Solve each equation. } \\
x=\frac{1}{3} \text { or } x=-\frac{3}{2} &
\end{aligned}
$$

SQUARE ROOT PROPERTY

SQUARE ROOT PROPERTY

$$
\begin{gathered}
\text { If } x^{2}=\boldsymbol{k} \text {, then } \\
\boldsymbol{x}=\sqrt{\boldsymbol{k}} \text { or } \boldsymbol{x}=-\sqrt{\boldsymbol{k}}
\end{gathered}
$$

SQUARE ROOT PROPERTY

A quadratic equation of the form $x^{2}=\boldsymbol{k}$ can be solved by factoring.

$$
\begin{aligned}
x^{2}-k=0 & \text { Subtract } \boldsymbol{k} \text { (both sides). } \\
(x-\sqrt{k})(x+\sqrt{k})=0 & \text { Factor. } \\
x-\sqrt{k}=0 \text { or } x+\sqrt{k}=0 & \text { Zero-factor property. } \\
x=\sqrt{k} \text { or } x=-\sqrt{k} & \text { Solve each equation. }
\end{aligned}
$$

SQUARE ROOT PROPERTY

That is, the solution set of $\boldsymbol{x}^{2}=\boldsymbol{k}$ is $\{\sqrt{\boldsymbol{k}},-\sqrt{\boldsymbol{k}}\}$ which may be abbreviated $\{ \pm \sqrt{\boldsymbol{k}}\}$.

Both solutions are real if $\boldsymbol{k}>\boldsymbol{0}$.
Both are pure imaginary if $\boldsymbol{k}<\mathbf{0}$.
If $\boldsymbol{k}<\mathbf{0}$, we write the solution set as $\{ \pm i \sqrt{|k|}\}$
If $\boldsymbol{k}=\mathbf{0}$, then there is only one distinct solution, $\mathbf{0}$, sometimes called a double solution.

Example 2 Using the Square Root Property

2(a) Solve: $x^{2}=17$
Solution:

By the square root property ...
The solution set of $x^{2}=17$ is $\{ \pm \sqrt{17}\}$.

TERRAMETRA

Example 2 Using the Square Root Property

2(b) Solve: $x^{2}=-25$
Solution:

By the square root property and since $\sqrt{-1}=i \ldots$ The solution set of $x^{2}=-25$ is $\{ \pm 5 i\}$.

Example 2
 Using the Square Root Property

2(c) Solve: $(x-4)^{2}=12$
Solution:

$$
\begin{aligned}
x-4 & = \pm \sqrt{12} & & \text { Generalized } \\
x & =4 \pm \sqrt{12} & & \text { Add } 4 \text { (both sides). } \\
x & =4 \pm 2 \sqrt{3} & & \sqrt{12}=\sqrt{4 \cdot 3}=2 \sqrt{3}
\end{aligned}
$$

The solution set is $\{4 \pm 2 \sqrt{3}\}$.

COMPLETING the SQUARE

COMPLETING the SQUARE

To solve $\boldsymbol{a} x^{2}+b x+c=0$, where $\boldsymbol{a} \neq \mathbf{0}$, by completing the square, use these steps:
Step 1 If $\boldsymbol{a} \neq \mathbf{1}$, divide both sides of the equation by \boldsymbol{a}.
Step 2 Rewrite the equation so that the constant term is alone on one side of the equality symbol.
Step 3 Square half the coefficient of \boldsymbol{x}, and add this square to each side of the equation.
Step 4 Factor the resulting trinomial as a perfect square and combine like terms on the other side.
Step 5 Use the square root property to complete the solution.

Example 3

Completing the Square ($\mathrm{a}=1$)

3(a) Solve: $x^{2}-4 x-14=0$
Solution:

Step 1 This step is not necessary since $a=1$.
Step 2

$$
x^{2}-4 x=14 \quad \text { Add } 14 \text { (both sides). }
$$

Step 3

$$
x^{2}-4 x+4=14+4
$$

$$
\left[\frac{1}{2}(-4)\right]^{2}=4
$$

Add 4 (both sides).
Step 4

$$
(x-2)^{2}=18
$$

Factor; Combine like terms.

Example 3

Completing the Square ($\mathrm{a}=1$)

3(a) Solve: $x^{2}-4 x-24=0$
Solution (cont'd):

Step 5

$$
x-2= \pm \sqrt{18}
$$

Square root property. $x=2 \pm \sqrt{18} \quad$ Add 2 (both sides).

$$
x=2 \pm 3 \sqrt{2} \quad \text { Simplify the radical. }
$$

The solution set is $\{2 \pm 3 \sqrt{2}\}$.

Example 4

Completing the Square

 ($a \neq 1$)4(a) Solve: $9 x^{2}-12 x+9=0$
Solution:

$$
9 x^{2}-12 x+9=0
$$

Step $1 \quad x^{2}-\frac{4}{3} x+1=0$
Divide by 9 (both sides).

Step 2

$$
x^{2}-\frac{4}{3} x=-1
$$

Step $3 \quad x^{2}-\frac{4}{3} x+\frac{4}{9}=-1+\frac{4}{9}$
Step $4 \quad\left(x-\frac{2}{3}\right)^{2}=-\frac{5}{9}$
Subtract 1 (both sides).
$\left[\frac{1}{2}\left(-\frac{4}{3}\right)\right]^{2}=\frac{4}{9}$
Add $\frac{4}{9}$ (both sides).
Factor; Combine like terms.

Example 4

Completing the Square

 ($a \neq 1$)4(a) Solve: $9 x^{2}-12 x+9=0$
Solution (cont'd):

Step 5

$$
\begin{aligned}
\left(x-\frac{2}{3}\right)^{2} & =-\frac{5}{9} \\
x-\frac{2}{3} & = \pm \sqrt{-\frac{5}{9}} \quad \text { Square root property. } \\
x-\frac{2}{3} & = \pm \frac{\sqrt{5}}{3} i \\
x & =\frac{2}{3} \pm \frac{\sqrt{5}}{3} i \quad \sqrt{-\frac{5}{9}}=\frac{\sqrt{-5}}{\sqrt{9}}=\frac{i \sqrt{5}}{3} \text { or } \frac{\sqrt{5}}{3} i \\
& \text { Add } \frac{2}{3} \text { (both sides). }
\end{aligned}
$$

The solution set is $\left\{\frac{2}{3} \pm \frac{\sqrt{5}}{3} \boldsymbol{i}\right\}$.

QUADRATIC FORMULA

QUADRATIC FORMULA

The solutions of the quadratic equation $a x^{2}+b x+c=0$, where $a \neq 0$, are given by the quadratic formula ...

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

QUADRATIC FORMULA

That is, if we start with the equation ...

$$
a x^{2}+b x+c=0, \text { for } a>0
$$ and complete the square to solve for \boldsymbol{x} in terms of the constants $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}, the result is a general formula for solving any quadratic equation.

QUADRATIC FORMULA

Caution

Remember the fraction bar in the quadratic formula extends under the -b term in the numerator.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example 5
Using the Quadratic Formula (Real Solutions)

5(a) Solve: $x^{2}-4 x=-2$
Solution:

$$
\begin{array}{ll}
x^{2}-4 x+2=0 & \text { Standard form. } \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a x} & \begin{array}{l}
\text { Quadratic formula. } \\
a=1, b=-4, c=2
\end{array}
\end{array}
$$

The fraction

$$
=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(2)}}{2(1)}
$$ bar extends under -b.

Use parentheses and substitute carefully to avoid errors.

TERRAMETRA

Example 5
Using the Quadratic Formula (Real Solutions)

5(a) Solve: $x^{2}-4 x=-2$
Solution (cont'd):

$$
\begin{array}{ll}
x=\frac{4 \pm \sqrt{16-8}}{2} & \text { Simplify } \\
x=\frac{4 \pm 2 \sqrt{2}}{2} & \sqrt{16-8}=\sqrt{8}=\sqrt{4 \cdot 2}=2 \sqrt{2}
\end{array}
$$

Factor first, then divide.

x	$=\frac{2(2 \pm \sqrt{2})}{2}$	Factor 2 out of the numerator.
$x=2 \pm \sqrt{2}$	Lowest terms.	

The solution set is $\{2 \pm \sqrt{2}\}$.

Example 6
 Using the Quadratic Formula (Nonreal Complex Solutions)

6(a) Solve: $2 x^{2}=x-4$
Solution:

$$
\begin{array}{ll}
2 x^{2}-x+4=0 & \text { Standard form. } \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \begin{array}{l}
\text { Quadratic formula. } \\
a=2, b=-1, c=4
\end{array} \\
x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(2)(4)}}{2(2)} & \begin{array}{c}
\text { Use parentheses and } \\
\text { substitute carefully } \\
\text { to avoid errors. }
\end{array}
\end{array}
$$

The fraction bar extends under -b.

TERRAMETRA

Example 6

Using the Quadratic Formula

 (Nonreal Complex Solutions)6(a) Solve: $2 x^{2}=x-4$
Solution (cont'd):

$$
\begin{array}{ll}
x=\frac{1 \pm \sqrt{1-32}}{4} & \text { Simplify. } \\
x=\frac{1 \pm \sqrt{-31}}{4} & \sqrt{-1}=i \\
x=\frac{1 \pm i \sqrt{31}}{4} &
\end{array}
$$

The solution set is $\left\{\frac{1}{4} \pm \frac{\sqrt{31}}{4} i\right\}$.

CUBIC EQUATIONS
 (Third Degree Equations)

CUBIC EQUATIONS

A cubic equation is a third-degree equation, because the greatest degree of the terms is 3 .

$$
x^{3}=-8 \quad 8 x^{3}+10 x^{2}-4 x-5=0 \quad 3 x^{3}=3 x^{2}-9
$$

Example 7

Solving a Cubic Equation

7(a) Solve: $x^{3}+8-0$ using factoring and the Solution: quadratic formula.

$$
\begin{array}{cl}
\begin{aligned}
(x+2)\left(x^{2}-2 x+4\right)=0 & \text { Factor as a sum of cubes. } \\
x+2=0 \text { or } x^{2}-2 x+4=0 & \text { Zero-factor property. } \\
x=-2 \text { or } x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(4)}}{2(1)} & \begin{array}{l}
\text { Quadratic formula. } \\
a=1, b=-2, c=4
\end{array} \\
\begin{array}{c}
\text { Remember to include } \\
\text { in the final solution set. }
\end{array} & \begin{array}{l}
\text { Simplify. }
\end{array}
\end{aligned} . \begin{array}{l}
x=\frac{2 \pm \sqrt{-12}}{2}
\end{array}
\end{array}
$$

Example 7

Solving a Cubic Equation

7(a) Solve: $x^{3}+8=0$
Solution (cont'd):

$$
\begin{array}{ll}
x=\frac{2 \pm \sqrt{-12}}{2} & \\
x=\frac{2 \pm 2 i \sqrt{3}}{2} & \text { Simplify the radical. } \\
x=\frac{2(1 \pm i \sqrt{3})}{2} & \begin{array}{l}
\text { Factor } 2 \text { out of } \\
\text { the numerator. }
\end{array} \\
x=1 \pm i \sqrt{3} & \text { Lowest terms. }
\end{array}
$$

The solution set is $\{-2,1 \pm i \sqrt{3}\}$.

Example 8

Solving for a Quadratic Variable

8(a) Solve the equation for the specified variable. Use \pm when taking square roots.

Solve:

$$
A=\frac{\pi d^{2}}{4}, \text { for } d
$$

Solution:

$$
A=\frac{\pi d^{2}}{4}
$$

$$
4 A=\pi d^{2}
$$

$$
\frac{4 A}{\pi}=d^{2}
$$

See the Note following this example.

Multiply by 4 (both sides).
Goal: Isolate d, the specified variable.

Divide by π (both sides).

Square root property.

Example 8

Solving for a Quadratic Variable

8(a) Solve the equation for the specified variable. Use \pm when taking square roots.

Solve:

$$
A=\frac{\pi d^{2}}{4}, \text { for } d
$$

Solution (cont'd):

$$
d= \pm \frac{\sqrt{4 A}}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{\sqrt{\pi}} \text { Multiply by } \frac{\sqrt{\pi}}{\sqrt{\pi}}
$$

$$
d=\frac{ \pm \sqrt{4 A \pi}}{\pi} \quad \begin{array}{ll}
\text { Multiply numerators. } \\
\text { Multiply denominators. }
\end{array}
$$

$$
d=\frac{ \pm 2 \sqrt{A \pi}}{\pi} \quad \text { Simplify the radical. }
$$

8(b) Solve the equation for the specified variable. Use \pm when taking square roots.

Solve:

$$
r t^{2}-s t=k \quad(r \neq 0), \text { for } t
$$

Solution: Because $r t^{2}-s t=k$ has terms with t^{2} and t, use the quadratic formula.

$$
\begin{array}{ll}
r t^{2}-s t-k=0 & \text { Write in standard form. } \\
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \begin{array}{l}
\text { Quadratic formula. } \\
a=r, b=-s,=-k
\end{array}
\end{array}
$$

Example 8

Solving for a Quadratic Variable

8(b) Solve the equation for the specified variable. Use \pm when taking square roots.

Solve:

$$
r t^{2}-s t=k \quad(r \neq 0), \text { for } t
$$

Solution (cont'd):

$$
t=\frac{-(-s) \pm \sqrt{(-s)^{2}-4(r)(-k)}}{2(r)} \quad \begin{aligned}
& \text { Quadratic formula. } \\
& a=r, b=-s,=-k
\end{aligned}
$$

$$
t=\frac{s \pm \sqrt{s^{2}+4 r k}}{2 r}
$$

Simplify.

Example 8

Solving for a Quadratic Variable

Note

In Example 8 ...

we took both positive and negative square roots.
However, if the variable represents time or length in an application, we consider only the positive square root.

DISCRIMINANT

DISCRIMINANT

The quantity under the radical in the quadratic formula, $b^{2}-4 a c$, is called the discriminant.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

DISCRIMINANT

DISCRIMINANT	NUMBER OF SOLUTIONS	TYPE OF SOLUTIONS
Positive, Perfect Square	Two	Rational
Positive, Not a Perfect Square	Two	Irrational
Zero	One (Double Solution)	Rational
Negative	Two	Nonreal Complex

DISCRIMINANT

Caution

The restriction on a, b, and c is important.

For example $x^{2}-\sqrt{5} x-1=0$ has discriminant $b^{2}-4 a c=5+4=9$, which would indicate two rational solutions if the coefficients were integers. By the quadratic formula, the two solutions ...

$$
\frac{\sqrt{5} \pm 3}{2} \text { are irrational numbers. }
$$

TERRAMETRA

Example 9 Using the Discriminant

9(a) Evaluate the discriminant for the equation.
Then use it to determine the number of distinct solutions, and tell whether they are rational, irrational, or nonreal complex numbers.

$$
5 x^{2}+2 x-4=0
$$

Solution:

$$
\begin{aligned}
& \text { For } 5 x^{2}+2 x-4=0 \text {, use } a=5, b=2 \text {, and } c=-4 . \\
& \qquad b^{2}-4 a c=2^{2}-4(5)(-4)=84
\end{aligned}
$$

The discriminant 84 is positive and not a perfect square ...
There are two distinct irrational solutions.

Example 9 Using the Discriminant

9(b) Evaluate the discriminant for the equation.
Then use it to determine the number of distinct solutions, and tell whether they are rational, irrational, or nonreal complex numbers.

$$
x^{2}-10 x=-25
$$

Solution:

$$
\begin{aligned}
& \text { For } x^{2}-10 x+25=0 \text {, use } a=1, \quad b=-10 \text {, and } c=25 \\
& \qquad b^{2}-4 a c=10^{2}-4(1)(25)=0
\end{aligned}
$$

There is one distinct rational solution, a double solution.

Example 9 Using the Discriminant

9(c) Evaluate the discriminant for the equation.
Then use it to determine the number of distinct solutions, and tell whether they are rational, irrational, or nonreal complex numbers.

$$
2 x^{2}-x+1=0
$$

Solution:

$$
\begin{aligned}
& \text { For } 2 x^{2}-x+1=0 \text {, use } a=2, b=-1, \text { and } c=1 . \\
& \qquad b^{2}-4 a c=(-1)^{2}-4(2)(1)=-7
\end{aligned}
$$

There are two distinct nonreal complex solutions. (They are complex conjugates.)

